Stabilization of ERK-Phosphorylated METTL3 by USP5 Increases m⁶A Methylation Hui-Lung Sun^{1,2,9}, Allen C. Zhu^{1,2,3,9}, Yawei Gao⁴, Hideki Terajima^{1,2}, Qili Fei^{1,2}, Shun Liu^{1,2}, Linda Zhang^{1,2}, Zijie Zhang^{1,2}, Bryan T. Harada^{1,2}, Yu-Ying He⁵, Marc B. Bissonnette⁶, Mien-Chie Hung⁷, Chuan He^{1,2,8} ¹Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637 USA. ²Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA ³Medical Scientist Training Program, The University of Chicago, Chicago, IL 60637, USA ⁴Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China. ⁵Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA. ⁶Department of Medicine, The University of Chicago, Chicago, IL 60637, USA. ⁷China Medical University, Taichung 404, Taiwan. ⁸Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA. ⁹These authors contributed equally ## 1 INTRODUCTION #### A. Epitranscriptomics—codes along RNA sequences Like the epigenetic regulation of DNA and histones, RNA has been shown to carry reversible biochemical modifications that mediate gene expression regulation. #### B. N⁶-methyladenosine (m⁶A) on mRNAs Prevalence: ~3-5 m⁶A sites per mRNA Distribution: RRACH sequence motif; enriched near stop codons and 3'UTRs Dynamic: enzymes reversibly install m⁶A Functions: through m⁶A binding proteins¹ The formation of m⁶A is catalyzed by the "writer" enzyme METTL3, METTL3-METTL14-WTAP methyltransferase complex. How METTL3 activity is post-translationally regulated is not well understood. Understanding these effects may show how METTL3 controls gene expression through m⁶A. #### C. Previous Studies: m⁶A & METTL3 in Stem Cells and Cancer METTL3 has an oncogenic role in lung cancer, leukemia, bladder cancer³ METTL3 has been shown to promote differentiation and priming in stem cells. 4-5 Post-translational modifications such as SUMOylation have been shown to modulate METTL3 activity. 6 ## 2 HYPOTHESIS & STRATEGY We hypothesized that phosphorylation of METTL3 by a kinase signaling pathway regulates m⁶A methyltransferase activity and employed a CRISPR screen with GGACU-dependent GFP expression to find regulators of the m⁶A pathway. ## RESULTS #### The RAS/MAPK pathway kinase ERK2 phosphorylates **METTL3 and WTAP** ERK2 binds to both METTL3 and WTAP. When their common docking motifs are abolished, so is the interaction. In vitro, ERK2 is able to phosphorylate METTL3. This occurs at S43, S50, and S525 on METTL3 and at S306 and S341 on WTAP. #### Phosphorylation stabilizes METTL3 by deubiquitinase USP5 Phosphorylation of METTL3/WTAP stabilizes the writer complex. Lack of phosphorylation by ERK2 increases ubiquitination, due to decreased interaction with deubiquitinase USP5. #### METTL3 phosphorylation differentiation of promotes embryonic stem cells The FGF4-ERK pathway is activated in ESCs to promote differentiation. METTL3 phosphorylation cell increased lifetime renewal and pluripotent mRNA transcripts. ### METTL3 phosphorylation increases m⁶A methylation expression Alpha6-Beta4 Integrin Signaling Pathway ## 4 CONCLUSION & FUTURE STUDIES #### **Future Studies:** level. How do other kinases such as ATM/ATR or p38 affect METTL3 phosphorylation and activity? Could other GGACU-GFP CRISPR screen top hits reveal more regulators of m^6A ? What is the structural basis for phosphorylationdependent METTL3-WTAP interaction with USP5? 1 Roundtree et al., 2017. Cell 169. 3 Lin et al., 2016, Mol Cell. 62. 5 Du et al., 2018, Nucleic Acids Res. 46. 2 Barbieri et al., 2017, Nature 552. 4 Cui et al., 2017, Cell Rep. 18. 6 Zhang et al., 2016, PNAS. 113.