Success Story

February 12, 2019  |  Jola Glotzer

Boosting malaria vaccine

Two CBC affiliates, Jeffrey Hubbell and Melody Swartz, UChicago, develop a novel system to deliver a malaria vaccine that is more effective than those currently available

Congratulations to Jeffrey Hubbell and Melody Swartz, UChicago, who are senior co-authors on a recent publication in Nature Materials, “Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity.” The paper describes an innovative approach to developing new adjuvants, which, once coupled with the malaria antigen, target specific immune cells called dendritic cells, which in turn activate T cells. The method appears more effective than currently available malaria vaccines. It has also broad implications for developing other immunotherapeutics. Jeff is a past CBC Catalyst Award recipient (2016). Melody was an invited speaker at the 9th Annual CBC Symposium (2011): “Engineering Biology: From Tools to Insights.” CBC congratulates all authors behind the development of this innovative and promising methodology.

New vaccine for malaria developed at IME could be more effective

System could address other complex infections, cancer

UChicago News  |  Emily Ayshford  |  February 1, 2019

IME researchers have developed an innovative new system for delivering a vaccine for malaria, commonly spread by mosquitoes. PHOTO: Copyright

Researchers at the Institute for Molecular Engineering at the University of Chicago have developed an innovative new system for delivering a malaria vaccine that shows promise in its effectiveness. By developing a vaccine that targets specific cells in the immune system, they have seen a much greater immune and antibody response to the vaccine.

Though a vaccine for malaria exists, it is only effective in 30 percent to 50 percent of patients, and malaria is still responsible for nearly 500,000 deaths annually, according to the Centers for Disease Control.

“When compared to the current malaria vaccine option, our results are extremely exciting,” said Jeffrey Hubbell, the Eugene Bell Professor in Tissue Engineering, a pioneering researcher and early entrepreneur in the field of tissue engineering. Hubbell co-authored a paper that was recently published in Nature Materials. “This work could potentially have applications in vaccinations against complex infections and cancer.”

Developing an effective subunit vaccine

Effective vaccines for many complex infections, like malaria, remain elusive because they require both protection against pathogens and specialized immune cells to clear infected cells. But immunoengineering is a specialty of the IME, which is helping shape the emerging field of molecular engineering to address global challenges from the molecular level up.

Though vaccines are routine in public health, they do not all work the same way. Researchers have developed several strategies for generating immunity in patients.

One of the safest and easiest vaccine platforms is the subunit vaccine. Researchers take proteins derived from the pathogen, called antigens, and formulate them with a compound called an adjuvant that induces a pro-inflammatory response. In the body, the antigen introduces the disease to the immune system, while the adjuvant activates pathogen-specific T cells, which help clear infected cells. This type of vaccine is used for whooping cough, HPV and malaria.

While the field has developed subunit vaccines with effective antigens, researchers have found less success with adjuvants, mainly because it is difficult to localize their delivery to the right location within the body. If such molecules aren’t targeted, they can cause inflammation throughout the body, which can be fatal.

Directing the delivery

Jeffrey Hubbell, PhD, The University of Chicago

Hubbell and his colleagues approached this problem as a delivery issue. To deliver the vaccine to its intended target, they developed a vaccine platform made up of a polymeric adjuvant—which contains multiple adjuvant molecules connected like pearls in a necklace—coupled with an antigen. This platform can easily drain into the secondary lymphoid tissues.

To make sure it found its way to the intended site, they incorporated mannose, a type of sugar, into the polymeric adjuvant. Because viruses and bacteria tend to have a lot of sugar on their surfaces, the dendritic cells in the lymphoid tissues have several sugar receptors that help in the recognition of pathogens.

So once the mannose-laden vaccine is injected into the body, it targets specific immune cells called dendritic cells, which in turn activate T cells. By specifically targeting dendritic cells, this new technology prevents systemic inflammation while efficiently activating an immune response.

“It’s a targeting material, but it is also inherently therapeutic,” said D. Scott Wilson, a postdoctoral researcher in Hubbell’s lab and first author on the paper.

When tested, the vaccine system had a higher antibody response than the malaria vaccine currently on the market. It also provided a cellular response—clearing the infected cells—which the current vaccine does not do.

Researchers have now partnered with Emory University to continue testing the system and hope to develop similar models for cancer and flu vaccines.

Funding: Whitaker Foundation, School of Life Sciences EPFL and the University of Chicago.

Wilson DS, Hirosue S, Raczy MM, Bonilla-Ramirez L, Jeanbart L, Wang R, Kwissa M, Franetich JF, Broggi MAS, Diaceri G, Quaglia-Thermes X, Mazier D, Swartz MA, Hubbell JA. Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity. Nat Mater. 2019 Feb;18(2):175-185. (PubMed)

Adapted (with modifications) from the UChicago News, by Emily Ayshford, February 1, 2019.

Featured scientist(s) with ties to cbc:

Jeffrey Hubbell, UChicago

Melody Swartz, UChicago


February 8, 2019
▸ More accolades for CBC community members
Two CBC affiliates, Jeffrey Hubbell, UChicago and Teresa Woodruff, NU, elected to the National Academy of Medicine

April 25, 2018
▸ Past CBC symposium speaker, Melody Swartz, UChicago, elected to American Academy of Arts and Sciences

January 2, 2018
▸ Improving immunotherapy—impact of UChicago scientists, including three CBC community members: Thomas Gajewski, Melody Swartz and Everett Vokes

November 10, 2017
▸ Enhanced anti-cancer activity with decreased side effects: a promising new technology developed by Jeffrey Hubbell and Melody Swartz, UChicago bioengineers with ties to CBC

September 21, 2017
▸ Double agents: Vessels that help cancers spread can also boost immune therapies